Iron tetracarbonyl hydride

Iron tetracarbonyl hydride
Identifiers
CAS number 12002-28-7 Y
PubChem 518470
ChemSpider 452380 N
Jmol-3D images Image 1
Image 2
Properties
Molecular formula FeC4H2O4
Molar mass 169.901 g mol-1
Exact mass 169.930250685 g mol-1
Appearance Liquid (at -20 °C)
Melting point

-70 °C, 203 K, -94 °F

Boiling point

-20 °C, 253 K, -4 °F (decomposes)

 N (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Iron tetracarbonyl hydride is the organometallic compound with the formula H2Fe(CO)4. Also known as tetracarbonyldihydridoiron, or iron tetracarbonyldihydride, this compound was the first metal hydride discovered. The complex is only stable at low temperatures and decomposes rapidly at temperatures above -20 °C.

Contents

Preparation

Iron tetracarbonyl hydride was originally produced by Hieber and Leutert as outlined below.[1][2]

Fe(CO)5 + 2OH- → HFe(CO)4- + HCO3-
HFe(CO)4- + H+ → H2Fe(CO)4

Current procedures consist of treatment of iron pentacarbonyl with potassium hydroxide and barium hydroxide to yield an orange solution. From this point in the reaction, ideal conditions consist of a cold dark environment, thus dubbing the method the “polar night synthesis”.[3] This dark, cold environment stabilizes the dianion species Fe(CO)42-, which is light and temperature sensitive. The orange solution was then treated with sulfuric acid.

Structure and properties

In iron tetracarbonyl hydride the Fe(CO)4 group has C2v molecular symmetry with a geometry intermediate between octahedral and tetrahedral. Viewed as an octahedral complex, the hydride ligands are cis. Viewed as a tetrahedral Fe(CO)4 complex, the hydrides occupy adjacent faces of the tetrahedral.[4]

Main reactions

Iron tetracarbonyl hydride undergoes rapid ligand substitutions. Liberation of H2 upon warming occurs to give the trans product.[5]

H2Fe(CO)4 + PPh3 → H2Fe(CO)3PPh3
H2Fe(CO)3PPh3 → trans-Fe(CO)3PPh3 + H2

Acidity

The hydrides in tetracarbonyldihydroiron have a pK1 of 6.8 and pK2 of 15.[6] The monoanion is noteworthy and is reviewed extensively.[7] The monoanion is an important intermediate in the water-gas shift reaction (WGSR). The slow step in the iron carbonyl-catalyzed WGSR is the proton transfer from water to the iron hydride anion.[8]

HFe(CO)4- + H2O → H2Fe(CO)4 + OH-

As described and outlined above, iron tetracarbonyl hydride undergoes rapid ligand substitutions due to its thermal instability, with the liberation of H2.[5] Another way the complex has been used is for cooperative bimetallic activation of CO2.[9]

Cp2MoCO2 + H2Fe(CO)4 → Cp2MoHCO+ HFe3(CO)11- + H2O

References

  1. ^ W. Hieber, F. Leutert (1931). "Zur Kenntnis des koordinative gebundene Kohlenoxyds: Bildung von Eisencarbonylwasserstoff". Naturwissenschaften 19 (17): 360. doi:10.1007/BF01522286. 
  2. ^ Rittmeyer, P.; Wietelmann, U. (2005), "Hydrides", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a13_199 
  3. ^ Vancea L. and Graham W.A.G. (1977). "Stereochemically Nonrigid Six-Coordinate Metal Carbonyl Complexes". J. Organomet. Chem. 134 (2): 219. doi:10.1016/S0022-328X(00)81421-7. 
  4. ^ McNeill, E. A.; Scholer, F. R. (1977). "Molecular structure of the gaseous metal carbonyl hydrides of manganese, iron, and cobalt". J. Am. Chem. Soc. 99 (19): 6243. doi:10.1021/ja00461a011. 
  5. ^ a b Peason R. G., H.W. Walker, H. Mauermann, P.C. Ford (1981). "Hydrogen migration mechanism for ligand substitution reactions in metal carbonyl hydrides". Inorg. Chem. 20 (8): 2741. doi:10.1021/ic50222a078. 
  6. ^ Shapely J.R., G. F. Stuntz (1979). "Rates of Deprotonation and pKa Values of Transition Metal Carbonyl Hydrides". J. Am. Chem. Soc. 101 (24): 7428. doi:10.1021/ja00518a061. 
  7. ^ J. Brunet (1990). "Tetracarbonylhydridoferrates, MHFe(CO)4: Versatile tools in Organic Synthesis and Catalysis". Chem. Rev. 90 (6): 1041. doi:10.1021/cr00104a006. 
  8. ^ Crabtree R.H.; Mingos D.M.P. 2007. Comprehensive Organometallic Chemistry III From Fundamentals to Applications. Elsevier Ltd.
  9. ^ Tsai J., M.A. Khan, K.M. Nicholas (1991). "Reduction of Coordinated Carbon Dioxide by Transition-Metal Hydrides". Organometallics 10: 29. doi:10.1021/om00047a016.